Utilities for working with geometry in Koto.
The module contains the Vec2
, Vec3
, and
Rect
types.
|| -> Rect
Initializes a default Rect
with each component set to 0
.
|x: Number, y: Number, width: Number, height: Number| -> Rect
|xy: Vec2, size: Vec2| -> Rect
Initializes a Rect
with corresponding position and size.
from geometry import rect, vec2
rect()
# -> Rect{x: 0, y: 0, width: 0, height: 0}
rect 10, 20, 30, 40
# -> Rect{x: 10, y: 20, width: 30, height: 40}
rect (vec2 -1, 2), (vec2 99, 100)
# -> Rect{x: -1, y: 2, width: 99, height: 100}
|| -> Vec2
Initializes a default Vec2
with each component set to 0
.
|x: Number| -> Vec2
Initializes a Vec2
with x
specified, and y
set to 0
.
|x: Number, y: Number| -> Vec2
|xy: Vec2| -> Vec2
Initializes a Vec2
with corresponding x
and y
components.
from geometry import vec2
vec2()
# -> Vec2{x: 0, y: 0}
vec2 99, 100
# -> Vec2{x: 99, y: 100}
|| -> Vec3
Initializes a default Vec3
with each component set to 0
.
|x: Number| -> Vec3
Initializes a Vec3
with x
specified, and all other components set to 0
.
|x: Number, y: Number| -> Vec3
|xy: Vec2| -> Vec3
Initializes a Vec3
with x
and y
specified, and z
set to 0
.
|x: Number, y: Number, z: Number| -> Vec3
|xy: Vec2, z: Number| -> Vec3
|xyz: Vec3| -> Vec3
Initializes a Vec3
with specified x
, y
, and z
components.
from geometry import vec2, vec3
vec3()
# -> Vec3{x: 0, y: 0, z: 0}
vec3 -1, 3
# -> Vec3{x: -1, y: 3, z: 0}
vec3 10, 20, 30
# -> Vec3{x: 10, y: 20, z: 30}
vec3 (vec2 -1, -2), 5
# -> Vec3{x: -1, y: -2, z: 5}
The Rect
type represents a 2-dimensional rectangle,
with a defined position and size.
The position is interpreted as being at the center of the rectangle.
Comparison operations are available, and the rect's components are iterable.
r = geometry.rect 10, 20, 30, 40
x, y, w, h = r
x, y, w, h
# -> (10.0, 20.0, 30.0, 40.0)
|Rect| -> Number
Returns the position of rectangle's left edge.
# Create a rectangle centered at 0, 0
r = geometry.rect 0, 0, 200, 100
r.left()
# -> -100.0
|Rect| -> Number
Returns the position of rectangle's right edge.
# Create a rectangle centered at 0, 0
r = geometry.rect 0, 0, 200, 100
r.right()
# -> 100.0
|Rect| -> Number
Returns the position of rectangle's top edge.
# Create a rectangle centered at 0, 0
r = geometry.rect 0, 0, 200, 100
r.top()
# -> 50.0
|Rect| -> Number
Returns the position of rectangle's bottom edge.
# Create a rectangle centered at 0, 0
r = geometry.rect 0, 0, 200, 100
r.bottom()
# -> -50.0
|Rect| -> Number
Returns the width of the rectangle.
r = geometry.rect 0, 0, 200, 100
r.width()
# -> 200.0
|Rect| -> Number
Returns the width of the rectangle.
r = geometry.rect 0, 0, 200, 100
r.height()
# -> 100.0
|Rect| -> Vec2
Returns the center point of the rectangle.
r = geometry.rect -100, 42, 200, 100
r.center()
# -> Vec2{x: -100, y: 42}
|Rect| -> Vec2
Returns the x
component of the rectangle's center point.
r = geometry.rect -100, 42, 200, 100
r.x()
# -> -100.0
|Rect| -> Vec2
Returns the y
component of the rectangle's center point.
r = geometry.rect -100, 42, 200, 100
r.y()
# -> 42.0
|Rect, xy: Vec2| -> Vec2
Returns true if the given Vec2
is located within the rectangle's
bounds.
from geometry import rect, vec2
r = rect 0, 0, 200, 200
r.contains vec2 50, 50
# -> true
r.contains vec2 500, 500
# -> false
|Rect, x: Number y: Number| -> Rect
|Rect, xy: Vec2| -> Rect
Sets the rect's center position to the given x
and y
coordinates, and
returns the rect.
from geometry import rect, vec2
r = rect 0, 0, 200, 200
r.set_center 10, 10
# -> Rect{x: 10, y: 10, width: 200, height: 200}
r.set_center vec2()
# -> Rect{x: 0, y: 0, width: 200, height: 200}
The Vec2
type represents a 2-dimensional vector, with x
and y
coordinates.
All operators are implemented, and the vector's coordinates are iterable.
from geometry import vec2
(vec2 10, 20) + (vec2 30, 40)
# -> Vec2{x: 40, y: 60}
v = vec2 50, 100
v *= vec2 0.5, 2
x, y = v
x, y
# -> (25.0, 200.0)
v -= 50
# -> Vec2{x: -25, y: 150}
|Vec2| -> Number
Returns the angle of the vector, expressed in radians.
from geometry import vec2
(vec2 1, 0).angle()
# -> 0.0
print '{(vec2 0, 1).angle():.3}'
# -> 1.571
print '{(vec2 -1, 0).angle():.3}'
# -> 3.142
print '{(vec2 0, -1).angle():.3}'
# -> -1.571
|Vec2| -> Number
Returns the length of the vector.
from geometry import vec2
(vec2 0, 0).length()
# -> 0.0
(vec2 3, 4).length()
# -> 5.0
(vec2 -4, -3).length()
# -> 5.0
|Vec2| -> Number
Returns the x
coordinate of the vector.
from geometry import vec2
(vec2 -1, 0).x()
# -> -1.0
(vec2 3, 4).x()
# -> 3.0
|Vec2| -> Number
Returns the y
coordinate of the vector.
from geometry import vec2
(vec2 0, -2).y()
# -> -2.0
(vec2 3, 4).y()
# -> 4.0
The Vec3
type represents a 3-dimensional vector, with x
, y
, and z
coordinates.
All operators are implemented, and the vector's coordinates are iterable.
from geometry import vec3
(vec3 10, 20, 30) + (vec3 40, 50, 60)
# -> Vec3{x: 50, y: 70, z: 90}
v = vec3 50, 100, 150
v *= vec3 0.5, 2, -1
x, y, z = v
x, y, z
# -> (25.0, 200.0, -150.0)
|Vec3| -> Number
Returns the x
coordinate of the vector.
from geometry import vec3
(vec3 -1, 0, 1).x()
# -> -1.0
|Vec3| -> Number
Returns the y
coordinate of the vector.
from geometry import vec3
(vec3 -1, -2, -3).y()
# -> -2.0
|Vec3| -> Number
Returns the z
coordinate of the vector.
from geometry import vec3
(vec3 10, 20, 30).z()
# -> 30.0
|Vec3| -> Number
Returns the length of the vector.
from geometry import vec3
(vec3 0, 0, 10).length()
# -> 10.0
(vec3 1, 2, 2).length()
# -> 3.0